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ABSTRACT
While the concept of large-scale stream processing is very popular
nowadays, efficient dynamic allocation of resources is still an open
issue in the area. The database research community has yet to eval-
uate different autoscaling techniques for stream processing engines
under a robust benchmarking setting and evaluation framework.
As a result, no conclusions can be made about the current solutions
and problems that remain unsolved. Therefore, we address this
issue with a principled evaluation approach.

This paper evaluates the state-of-the-art control-based solutions
in the autoscaling area with diverse, dynamic workloads, applying
specific metrics. We investigate different aspects of the autoscaling
problem as performance and convergence. Our experiments reveal
that current control-based autoscaling techniques fail to account
for generated lag cost by rescaling or underprovisioning and cannot
efficiently handle practical scenarios of intensely dynamic work-
loads. Unexpectedly, we discovered that an autoscaling method not
tailored for streaming can outperform others in certain scenarios.
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1 INTRODUCTION
A plethora of applications utilize services provided by cloud com-
puting vendors with a variable demand for resources over time.
Thus, the vendors have to prepare their platforms for a highly dy-
namic allocation of resources, depending on the configurations set
by users. Furthermore, cloud platforms offer pay-per-use pricing
models so that applications only pay for the resources they actually
consume. To tackle this multi-conditional problem, the resources
should be able to upscale and downscale elastically, adapting to the
dynamic demand of the applications.
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Most of the widely adopted stream processing engines (SPEs)
were originally developed for deployment on clusters of fixed re-
sources. These SPEs provide limited autoscaling capabilities and
require substantial operational effort to adapt to changes in needs
and workloads. An operations team has to always monitor the
performance of the deployed system or application, estimate the
required resources, decide whether to scale, and perform a manual
rescaling. This process is time-consuming and offers slow reactions
to workload changes with serious performance implications.

To provide automated solutions, specialized autoscalers have
been developed to equip SPEs with the missing self-managing capa-
bilities. However, it remains unclear how these autoscalers perform
in different practical scenarios due to the absence of a proper com-
parison framework. We argue that without a principled and config-
urable experimental analysis, it is doubtful that these autoscalers
will have the desired impact on modern stream processing engines.

Identifying the difference in resource demand is a critical point
of this problem. The shift in demand can be identified by monitor-
ing the underlying infrastructure. Autoscaling methods can vary
in terms of problem modeling, heuristics, parameters, provisioning
metrics, granularity, and performance [27, 30]. Furthermore, the
more fine-grained the rescaling actions can be, based on the opera-
tors employed in the pipeline, the better an autoscaler will adjust the
resources to the workload patterns. The most prevalent categories
of autoscalers include reactive, such as threshold-based [14, 18], rein-
forcement learning [8, 25], queue-based [10, 24], control-based [9, 19]
and proactive solutions, like time series forecasting [4, 26].
Contributions. In this work, we thoroughly investigate the ex-
isting control-based autoscaling solutions for SPEs and provide a
concrete set of metrics, queries, and workloads to evaluate them
principally. We focus on control-based solutions due to their ver-
satility, their simplicity and the lack of training requirements. In
short, the contributions presented in this paper are the following:

• We stress the importance of extensive experimental evalua-
tion of autoscalers for stream processing.

• We reproduce state-of-the-art autoscalers for stream process-
ing under a common framework.

• We extend the autoscaling solutions operating on the deploy-
ment level to rescale on an operator level to ensure that the
resource allocation will harmonize with the demand.

• We extend the experimental evaluation of the state-of-the-art
control-based autoscaling solutions with heavily dynamic
workloads, and we establish important metrics for evaluat-
ing autoscaling. We present our experimental results over
diverse queries.

• We reach a series of interesting conclusions which, in our
opinion, will spark additional research in the area:
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– The design choices of each operator heavily influence
their performance and their ability to adhere to different
objectives.

– General-purpose autoscalers can perform better for state-
less queries than the evaluated solutions specifically tai-
lored to stream processing.

– The evaluated autoscalers struggle with complex stateful
queries under dynamic workloads.

– The stop-and-restart state migration process of current
SPEs hinders the performance of autoscalers that do not
account for the lag generated during the rescaling action.

All the resources are publicly available:
https://github.com/delftdata/espa-autoscaling.git
Outline. In Section 2 we present preliminaries and necessary no-
tation. Section 3 reviews autoscaling techniques and benchmarks
relevant to our work. In Section 4, we present in detail autoscal-
ing solutions, which we evaluate in this work. In Section 5, we
describe the metrics, workloads, and queries used for this evalua-
tion. Section 6 includes our experimental evaluation. In Sections 6.5
and 7, we discuss our key findings and limitations, highlight open
challenges, and share the lessons we learned, concluding the paper.

2 BACKGROUND
In this section, we dive into the autoscaling process and discuss the
necessary concepts to discuss the selected autoscalers.

2.1 Autoscaling Process
The process of autoscaling resembles the MAPE loop from control
theory. As depicted in Figure 1, the first step includes monitoring
of a stream processing job and acquiring all the metrics needed
both for the evaluation of its performance and for the decision of
performing rescaling actions. Then, the analysis step takes place,
where we evaluate the job’s current state and calculate the job’s
needs to adhere to the enforced agreements. The analysis outcome
is then used from the planning step to decide on the proper rescaling
actions. The goal is to satisfy the calculated needs while minimizing
the resources employed. The last step is executing the devised plan.
The monitoring API of the SPE or any applicable monitoring tool
is usually responsible for retrieving the metrics, while execution
usually falls on the SPE and its rescaling mechanism. The analysis
and planning steps are handled from the autoscaler.

AutoscalerSPE's
Monitoring API

SPE's rescaling
mechanism

AnalyzeMonitor Plan Execute

Figure 1: MAPE loop for stream processing autoscaling

2.2 Common notions
Workers & Operators. In this paper, we use Apache Flink as our
SPE. We choose Flink among other SPEs since it is the current
state-of-the-art and the most widely adopted system in production,
while providing all the mechanisms expected by the autoscalers.
Apache Flink refers to workers as task managers. By default, a task

manager runs multiple operators that share its resources. However,
we have configured Flink to isolate operators and assign a single
operator to each task manager.
Back pressure. Back pressure is a rate control mechanism em-
ployed by many SPEs. When an operator cannot handle the input
rate, the system uses the back pressure mechanism to regulate the
output rate of the upstream operator. The backpressure can be
propagated up to the source operator and the input queue.
Lag. Lag is defined as the number of unprocessed records waiting
in the input queue or the operator buffers.
Elasticity. Elasticity in cloud computing is the system’s ability to
dynamically adjust the resource allocation to evolving workloads
transparently. The system’s cost is optimized by aligning resource
allocation with actual demand.

3 RELATEDWORK
In this section, we discuss the related work on autoscalers specifi-
cally designed for stream processing and the available stream pro-
cessing benchmarks.
Threshold-based. In [14], threshold-based rules are shown to
boost performance when applied on individual hosts but not on
the entire system. The distributed stream processing engine in [18]
supports system scaling at run-time. The proposed autoscaler uses
threshold-based rules to test the scaling capabilities of the system.
Reinforcement Learning. Heinze et al. [14] also propose a rein-
forcement learning approach that can result in high performance
while minimizing the initial configuration costs. This problem is
further addressed in [15], where an online parameter optimiza-
tion technique is proposed, which detects changes in the workload
pattern and adapts the scaling policy accordingly. Lombardi et al.
[25] propose ELYSIUM, an autoscaler that optimizes resource con-
sumption considering the trade-off between horizontal and vertical
scaling. In another work, Lombardi et al. [26] propose PASCAL,
a general-purpose autoscaler based on reinforcement learning. A
proactive approach forecasts incoming workloads, while a profiling
system estimates the optimal provisioning. Doan et al. [8] pro-
pose a fuzzy deep reinforcement learning method for autoscaling
streaming architectures. Although effective, the parameter tuning
of the method is a non-trivial task. Cardellini et al. [6] propose an
autoscaler for stream processing in a decentralized environment.
It consists of two reinforcement-based learning approaches on a
two-layered hierarchical structure for handling each operator in
the system individually.
Queue-based. Lohrmann et al. [24] propose a generalized Jackson
network, allowing for more precise performance estimations. The
scaling decision is determined by comparing various resource al-
locations. Similarly, Fu et al. [10],[11] propose DRS to capture the
impact of provisioned resources using a queuing-theory-based au-
toscaler. [4] propose an autoscaling method for distributed stream
processing in geo-distributed environments. A performance model
decides which geo-distributed servers need additional resources to
optimize the maximal sustainable throughput of the system.
Control-based. Gedik et al. [13] proposed one of the first au-
toscalers specifically designed for distributed stream processing
engines (SPEs) with stateful operations support. Floratou et al. [9]
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propose a framework to create self-regulating streaming systems us-
ing scaling policies based on the back-pressure status of the system.
A self-adaptive processing graph was introduced in [17], which
divides the workload of overloaded operators over multiple replicas.
Using a control algorithm, the topology can be reactively and proac-
tively scaled, improving the performance and resource efficiency
of the system. Kalavri et al. [19] propose DS2, a control-based au-
toscaler for distributed stream processing. The authors introduce
true processing and output rate notions and estimate the optimal
parallelism for every operator in a single iteration. Mencagli et
al. [29] propose a two-fold autoscaling method based on adaptive
scheduling techniques for the short-term spikiness, while a fuzzy
logic controller handles the long-term rate variability. Liu et al.
[23] develop a profiling model to capture the impact of provisioned
resources on the performance and scale the application accord-
ingly. Varga et al. [33] propose two custom metrics combined with
Kubernetes’ out-of-the-box autoscaler HPA [2] for scaling SPEs.
Benchmarking. NEXMark [31], later extended by Beam [1], is
a streaming benchmark that includes a set of analytical queries
on streaming data from an online auction platform. Linear Road
benchmark [3] simulates a toll system for a fictional urban area.
The system monitors traffic and supports operations on live and
historical data. Another benchmark on traffic sensor analytics is
OSPbench [32]. SmartBench [28] focuses on querying IoT data de-
rived from a smart building monitoring system. The benchmark
performs a diverse set of temporal and spatial queries. SparkBench
[22], a benchmark focused on Apache Spark, emphasizes on popular
Spark applications, including machine learning, graph computa-
tion, SQL query and streaming. Analogously, ESPBench [16], use
multiple types of data to test workloads of varying complexity
(e.g. filtering, machine learning). DSPBench [5] covers multiple
streaming scenarios with 15 different benchmark workloads. Yahoo
Streaming Benchmark (YSB) [7] uses an advertisement campaign
simulation focusing on relational algebra operations, including fil-
tering, projections and joins. StreamBench [28] generated streams
from real-time web log processing and network traffic monitoring
seeds. The operational workload varies in complexity and scenarios
(e.g. performance, fault-tolerance).

4 CONTROL-BASED AUTOSCALERS
In this section, we delve into the core concepts of the selected au-
toscalers and how we extended some of them. For our evaluation,
we select the state-of-the-art DS2[19] and Dhalion[9]; these solu-
tions are easily deployed and widely accepted by the community.
We also consider Horizontal Pod Autoscaler [2], a solution applied
to a commercial product. Finally, we employ the metrics suggested
by Varga et al. [33] to extend HPA towards a solution more tailored
to stream processing.

4.1 Dhalion
Dhalion [9] is a framework that provides self-regulating capabilities
to underlying stream processing systems that employ a backpres-
sure mechanism to perform rate control. It utilizes user-defined
policies to handle performance issues related to different under-
lying causes, such as load skew, slow instances, and provisioning.

In this work, we are only interested in its proposed policy for au-
toscaling. The policy distinguishes two cases: an overprovisioning
and an underprovisioning case.
Overprovisioning. For an operator of a running job to be con-
sidered overprovisioned, two conditions must hold: (a) there is no
backpressure anywhere in the pipeline, and (b) the input queue of
the operator has a length of almost zero. For each operator consid-
ered overprovisioned, new parallelism is calculated using a provided
scale down factor.
Underprovisioning. If there is any backpressure along the pipeline,
the job is considered to be in an unhealthy state and underprovi-
sioned. To resolve the issue, the first step is to identify the operator
which is the root of the backpressure. Then, a scale up factor is cal-
culated for this operator based on the amount of time the job used
to process the input normally and the amount of time backpressure
occurred over the monitoring window. The current monitoring win-
dow is denoted as𝑤𝑖 . More precisely, the scale up factor is provided
by the following formula:

𝑠𝑐𝑎𝑙𝑒𝑈𝑝𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑏𝑎𝑐𝑘𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑑𝑇𝑖𝑚𝑒𝑤𝑖

𝑛𝑜𝑟𝑚𝑎𝑙𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒𝑤𝑖

(1)

As we consider Kafka as our source, we need to scale up/down
Flink’s KafkaSource operators. Since there is no backpressure infor-
mation available for these operators, we decided to use the increase
of lag noticed in Kafka as an indicator of backpressure caused by
the KafkaSource operators. We denote as pendingRecordsRate, the
average lag increase per second, and the average number of records
consumed per second as consumedRecordsRate. Finally, the scale up
factor is calculated as:

𝑠𝑐𝑎𝑙𝑒𝑈𝑝𝐹𝑎𝑐𝑡𝑜𝑟𝐾𝑆 =
𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝑅𝑎𝑡𝑒𝑤𝑖

𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝑅𝑎𝑡𝑒𝑤𝑖

(2)

We gather the needed metrics using the monitoring API of Flink
and Prometheus. Since Flink does not report the input queue size
of each individual operator, we use the percentage of input buffers
used to decide on the lag in the input queues.

4.2 DS2
In contrast to Dhalion, which scales each operator independently,
DS2 [19] attempts to combine the scaling of all operators in a single
step by leveraging the topology of the streaming query. To do so,
it introduces the notions of useful time, true processing rate, and
true output rate. Useful Time is the time spent by an operator in
(de)serializing and processing records. True processing rate is the
number of records an operator processes per unit of useful time,
while true output rate is the number of records an operator outputs
per unit of useful time. Based on these notions, DS2 calculates
progressively the optimal parallelism of each operator 𝑜𝑖 as follows:

𝑂𝑃𝑜𝑖 =

∑
true output rate of upstream operators

𝑎𝑣𝑔(true processing rate) of 𝑜𝑖
(3)

In this work, to calculate the optimal parallelism for the Kafka-
Source operators, we use the rate at which records are written to
Kafka as the true output rate of the upstream operators. In addition,
we extend DS2 with a user-provided overprovisioning factor to
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help DS2 to handle noisy spikes and the lag accumulated due to
scaling actions. This is the only tunable parameter of DS2.

4.3 HPA
The Horizontal Pod Autoscaler (HPA) [2] is the default autoscaling
solution shippedwith Kubernetes. HPA scales horizontally a deploy-
ment by adding or removing pods in order to match user-provided
target values based on an observed metric. The observed metric
can be either the standard average CPU/memory utilization or any
custom user-defined metric, applied as shown in Equation (4).

𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑃𝑜𝑑𝑠 = ⌈𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑑𝑠 × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑒𝑡𝑟𝑖𝑐𝑉𝑎𝑙𝑢𝑒

𝑡𝑎𝑟𝑔𝑒𝑡𝑀𝑒𝑡𝑟𝑖𝑐𝑉𝑎𝑙𝑢𝑒
⌉ (4)

When scaling down, HPA opts for a conservative approach. It
records the scaling recommendations over a stabilization window
and picks the highest recommendation as the desired amount of
resources. Thus, it ensures a gradual scaledown that is not affected
by fluctuations in the metric values.
HPA as a Streaming Topology Autoscaler. Since a given worker
in the streaming topology runs on an individual pod, HPA can be
used as a basis for building a streaming topology autoscaler that will
add or remove workers when required. Although, HPA works over
the workers’ deployment of Flink and is agnostic of the underlying
operators. Our version of HPAmonitors the actual operators within
a pod instead of the deployment of the workers. We employ the
average CPU utilization as a metric. From now on, we will refer
to this custom version of HPA as HPA-CPU. HPA-CPU has two
tunable parameters: the CPU utilization target value and the length
of the stabilization window.

4.4 HPA-Varga
Varga et al. [34] extend the HPA autoscaler to use metrics tailored
for stream processing; relative lag change and utilization can be
used in an ad-hoc fashion for HPA.
Utilization. Utilization provides additional system performance
insights. It separates over-provisioning from optimal provisioning
by analyzing the percentage of the available resources currently
employed for stream processing tasks. To do so, utilization employs
the idle-time-per-second metric that most modern stream process-
ing engines provide out of the box. The utilization of the system is
calculated using the following formula:

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 1 − 𝑎𝑣𝑔(idle time per second) (5)

Utilization can take values between 0 and 1. A value close to 1
means that the system is using the provided resources to their limits.
Otherwise, the resources are underutilized. If the targeted value
is close to 1, the autoscaler suggests intensive resource utilization,
resulting to fewer scale-up and more aggressive scale-down actions.
Although such a strategy might lower resource costs, it might also
result in underprovisioning. When lowering the target value, the
autoscaler issues scale-up actions more frequently. Such a setting
has a higher chance of leading to overprovisioning.
Relative lag change rate. To mitigate the effects of a possible
utilization’s misconfiguration, Varga et al. [33] pair utilization with
another metric. Relative lag change estimates the portion of the

workload the system cannot handle. It uses the derivative of the
system’s lag and the application’s input throughput recorded at
the input queue. The following formula calculates the relative lag
change rate:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐿𝑎𝑔𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒 = 1 + 𝑑𝑒𝑟𝑖𝑣 (total lag)
input throughput

(6)

The relative-lag-change rate denotes the rate at which the lag in
the input queue is increasing (> 1) or decreasing (< 1). When equal
to 1, the lag is not changing, and the current resources are sufficient
to handle the workload. Therefore, the relative lag change rate’s
target value is usually 1.0. When HPA is provided with two moni-
tored metrics, it decides on a scaling actions based on the metrics
resulting to the highest parallelism. To allow the autoscaler to scale
down in cases of overprovisioning, the authors propose ignoring
the relative lag change rate when the lag is below a user-provided
threshold. As a result, the HPA will only consider utilization when
the lag is below the threshold, allowing for scale-down actions
when overprovisioning

As discussed, in Section 4.3, the original HPA autoscaler targets
deployment-level autoscaling, which is insufficient for a stream
processing engine. The extensions suggested by Varga et al. [33]
operate similarly. To achieve operator-level autoscaling, we use the
same procedure with HPA-CPU, monitoring the operators. While
measuring the utilization is straightforward, measuring the relative
lag change rate per operator is not trivial. We measure it at the
input queue and propagate the result to the operator responsible
based on the utilization metric and the backpressure mechanism.

5 EVALUATION COMPONENTS
We now focus on establishing a principled evaluation framework
for stream processing autoscaling. First, we establish the metrics
that can provide feedback on the effectiveness of the autoscaling
solutions. Then, we discuss the most interesting NEXMark queries,
and finally, we propose a set of dynamic workloads that enable a
meaningful evaluation of the autoscalers. We conclude this section
with a discussion about the evaluation contributions in contrast to
the original papers of the methods we cover.

5.1 Performance Evaluation Metrics
Latency. Stream processing usually targets processing data and
acquiring results in real-time. Therefore, the most important metric
characterizing the performance of an SPE is latency [20]. Since the
goal of every autoscaler is to provision just the optimal resources
for an SPE to perform efficiently, the SPE’s latency can also be used
to evaluate the performance of an autoscaler [12, 23]. Typically, the
latency is measured as the time it takes for a record to be processed
and produce results from the moment it becomes available in the
input queue [20]. However, this definition of latency is difficult
to measure and depends significantly on the underlying query.
Instead, we measure latency as the time a record stays in the input
queue until the SPE processes it. We focus on the 50th and the 95th
percentile of this latency.
Throughput. Throughput is also one of the primary and most
important metrics used to evaluate the performance of an SPE under
the current deployment condition and, therefore, the performance
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Figure 2: Workloads

of an autoscaler. We define throughput as the number of records the
SPE ingests and processes over a second. By comparing the SPE’s
throughput with the input rate of our source, we can see whether
the system can keep up with the input rate and evaluate whether
an autoscaler has provided enough resources to the SPE.
Resource efficiency. To estimate the autoscalers’ efficiency re-
garding resource consumption, we consider the number of workers
deployed at any time during execution. This is equal to the sum of
the operators’ parallelism.
Number of scaling actions.We also consider the total number of
scaling actions. Depending on the system’s topology, scaling the
application can induce a significant overhead. This is especially the
case with stateful operators and stop and restart migration mecha-
nisms such as the one of Apache Flink, where the state needs to be
persistently stored, then migrated offline and reloaded according
to the new topology when the system restarts.
Convergence time & steps. Finally, we also investigate the con-
vergence time of the autoscaler, i.e., the total amount of time it
takes for the autoscaler to converge to a specific deployment for
a new throughput. We also measure the total number of scaling
actions required before converging to a new configuration.

5.2 Queries
For the evaluation of the autoscalers, we employ queries from
the original NEXMark benchmark [31] and the extended version
provided by the Apache Beam project [1]. NEXMark simulates an
e-commerce application, mainly featuring three types of records:
people, auctions, and bids. NEXMark provides a set of different
streaming queries with different properties and complexities. From
these queries, we select the following subset that covers the most
common types of streaming queries.
Map (Map). We first evaluate the autoscalers using an implementa-
tion of Q1 of the original NEXMark benchmark [31]. We will refer
to Q1 as the Map query. The Map query transforms the values of
auctions’ bids between different currencies, for example, convert-
ing U.S. dollars to Euros. Thus, it performs a map over the stream
of data. We choose Q1 as a representative stateless query with a
low-complexity topology and a low computational load.
Filter (FQ). FQ filters out bids that do not belong to a number of
selected auctions. Similarly to Q1, Q2 is also a stateless query with
low computational complexity that employs a flatmap as a filter.
Incremental Join (IJ). IJ focuses on profiling user lifecycles within
an online marketplace or an auction platform. It creates insights
about user behavior and engagement inside the platforms. The
query performs operations involving filtering and grouping. It is a
stateful query with a constantly growing state and a non-linear to
the input computational cost and, therefore, a complex and heavy
workload-wise query. IJ has the highest number of operators among
the selected NEXMark queries. We apply a time-to-live setting
for the state’s records, as a continuously expanding state is an
unrealistic streaming scenario and will eventually strain our limited
resources.
Sliding Window Aggregate (SA). SA targets items in the auction
platform based on their popularity over a certain time period mea-
sured by the volume of bids. SA operates a sliding window aggre-
gation query, i.e., it computes the total number of bids received for
each auction over a sliding time window. The query needs filtering
and grouping steps before performing the aggregation step. SA is
also a computationally expensive query with a large state; however,
in contrast to IJ, the computational cost is linear to the input rate.
Session Window Aggregate Query (SWA). SWA focuses on calcu-
lating the number of bids a user makes in each active session. To do
so, it performs a windowed aggregate (count) over a session win-
dow. Therefore, it also comprises a stateful complex computation
task, like the other windowed queries.

5.3 Workloads
We use a scalable generator that utilizes the NEXMark’s entity gen-
erators to create dynamic workloads following specified patterns.
We employ five different workload patterns.
Increasing. The increasing workload pattern (fig. 2a) starts from
zero input rate and constantly increases over time. The underlying
system starts from the minimum parallelism and must scale up
following the increase of the input rate. The increasing workload
allows for focusing only on scaling up actions and investigating
how each autoscaler handles them.
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Decreasing. The decreasing workload (fig. 2b) provides a symmet-
rically different scenario than the increasing workload. It starts
at a maximum input rate and then constantly decreases towards
zero input rate. The system starts from an appropriate for the high
throughput configuration and scales down following the decrease in
the input rate. Contrary to the increasing workload, the decreasing
workload allows us to focus only on scaling down actions.
Cosine. The cosine workload (fig. 2c) combines the increasing
and decreasing workloads following a cosine pattern. The cosine
workload allows for evaluating both the scaling up and scaling
down capabilities of an autoscaler, a more complex scaling scenario.
It imitates a significant subset of real-world scenarios of dynamic
workloads that show some periodical or seasonal behavior.
Random. Another workload that mimics a real-world scenario is
the random workload (fig. 2d). The random workload starts at a
specific input rate, which is randomly increased or decreased over
time. Not following a predefined pattern makes it more difficult for
the autoscalers to anticipate changes in the input rate, potentially
uncovering unwanted behavior programmed into the autoscalers.
Steps. Finally, the steps workload (fig. 2e) simulates a workload
that consists of fixed pulses of input rates. This workload allows for
investigating the performance of autoscalers when the objective is
to handle specific changes in the input rate efficiently. It resembles
a real-world scenario of changes in the throughput SLAs between
a provider and a client. It also enables us to investigate the time au-
toscalers take to converge to the optimal parallelism configuration
after a change in the targeted input throughput.

5.4 Discussion
To the best of our knowledge, this work is the first to compare
multiple autoscalers under a common framework and establish
specific workloads and metrics for this evaluation. The original
works presenting the evaluated autoscaling methods are limited,
using metrics tailored to a specific goal, and do not include ex-
tensive comparisons with competitors under a variety of scenar-
ios. Dhalion’s evaluation includes a single wordcount query for
throughput performance measurement, a convergence experiment
measuring the provisioned resources, and an experiment with two
input rate changes while omitting experiments with competitors.
Varga HPA focuses on snapshot capturing duration and operator
loading during rescaling without including experiments with com-
petitors. DS2 performs the most comprehensive evaluation across
three systems, employing six NEXMark queries and a wordcount
query. However, it only compares against Dhalion, while the evalu-
ation includes experiments with only two input rate changes and
convergence experiments. DS2’s primary focus lies in outlining
the convergence steps required to reach a requested throughput.
Finally, HPA has not been evaluated in a stream processing setting.

In this work, we establish the metrics that are relevant to au-
toscaling and should always be used for evaluating autoscaling
solutions. Additionally, we propose four heavily dynamic work-
loads that constantly change their input following specific patterns.
In this specific evaluation, we focus on latency performance, which
none of the evaluated solutions have previously considered. Fi-
nally, we stress-test all methods in real-world conditions where
data sources continuously produce items during rescaling, leading

to potential lag. Notably, none of the evaluated solutions has been
previously tested in this setting.

6 EXPERIMENTAL EVALUATION
We now present our detailed experimental analysis. First, we evalu-
ate the performance of the autoscalers with queries from the NEX-
Mark benchmark on different workloads. Then, we demonstrate
the performance of the autoscaling solutions on additional queries.
Next, we compare the convergence ability of each autoscaler. Fi-
nally, we discuss the results of our experimental evaluation.

6.1 Experimental Setup
The experiments are conducted on a 3-node Kubernetes cluster
with AMD EPYC 7H12 2.60GHz CPUs. On top of this Kubernetes
cluster, we have configured an Apache Flink cluster in application
mode. The JobManager (Flink’s coordinator) instance is provided
with 1 CPU and 8GB of memory, while each employed TaskMan-
ager (Flink’s worker) consists of 1CPU and 4GB of memory. An
NFS server is deployed as a persistence layer, Prometheus1 is used
for scraping and gathering all the metrics, and an Apache Kafka2
deployment is used as a source for the experiments. We cap the
available resources to 70 task managers, resulting in a maximum of
70 CPUs and 280GB of memory available for processing.

In our experiments, we set Dhalion’s scale-down factor to 0.2, a
value suggested in the original work. We use an overprovisioning
factor of 0.2 for DS2, which we consider to be sufficient as the
intention of DS2 is to avoid any overshooting of resources. We use
the default stabilization window of 5 minutes for HPA-CPU, and
we choose a target CPU utilization of 70% as the best performing
among the values tested. For HPA-Varga, we also consider a CPU
utilization target of 70%, the same with HPA-CPU. In addition, we
employ a cooldown window of 5 minutes after every scaling action
to allow time for the system to reach a stable state and avoid back-
to-back scaling actions due to a slow restart of the system or the
lag produced by the scaling action.

6.2 Workload Comparison
Our first set of experiments involves four workloads from Sec-
tion 5.3: increasing, decreasing, cosine, and random pattern work-
loads. The selected workloads represent heavily dynamic workload
patterns whose input rate changes constantly. Due to space con-
straints, we limit our evaluation of the autoscalers across different
workloads to two queries, the Map and the Session Window Ag-
gregate. We choose the Map query as a reference query because
of its simplicity and lack of state, allowing us to investigate the
performance of the autoscalers on a query with low computational
complexity. For such a query, performance is mostly influenced
by the ability of the system to ingest and circulate the input to its
operators rather than the actual computation. Alternatively, the
Session Window Aggregate query represents a common operation in
real-time analytics. Calculating time intervals for session windows
makes the Session Window Aggregate one of the most computa-
tionally complex queries available. In contrast to the Map query,

1https://prometheus.io/
2https://kafka.apache.org/

https://prometheus.io/
https://kafka.apache.org/
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Figure 3: Increasing pattern

the Session Window Aggregate query employs a heavy computa-
tional task that dominates the impact on the performance of the
underlying system and, thus, the employed autoscaler.
Increasing pattern. As discussed in Section 5.3, the increasing
workload pattern allows us to study the scaling-up behavior of the
autoscalers in isolation. Figure 3 showcases the performance of the
autoscalers on this workload in terms of the number of deployed
workers and the resulting latency throughout the execution of the
two deployed queries.
– Performance on Map. Figure 3a present the number of deployed
workers per minute during the Map query execution. We observe
that the number of workers Dhalion recommends does not fol-
low the input pattern. Although the input rate constantly increases,
Dhalion has large intervals of decreasing resources. At first, Dhalion
reacts slowly to the increasing rate; the backpressure keeps increas-
ing, translating to increasing latency (Figure 3c), which triggers an
aggressive scale-up. Evidently, Dhalion fails to suggest the right re-
sources leading to overprovisioning and a large scale-down interval
that does not match the expected behavior. DS2 avoids unnecessary
rescaling actions while providing the minimum required resources
for low latency when the input remains relatively low. When the
input increases significantly, every scaling action generates pro-
gressively more lag, and DS2 rescales more frequently. This causes
a constant increase in latency due to DS2 failing to accommodate
the generated lag. The HPA-based solutions assign workers to fol-
low the input pattern smoothly. Both autoscalers keep latency low
and perform more frequent rescaling actions than DS2. However,
HPA-Varga constantly suggests a lower number of workers without
compromising performance. Overall, HPA-based autoscalers match

the input pattern and perform better in latency. However, they
assign a slightly higher number of resources than DS2.
– Performance on SWA.We observe in Figure 3b that the methods
follow a similar trend. Dhalion shows the same behavior as in the
Map query; it fails to react on time to the input increase, then ag-
gressively overprovisions resources, leading to large scale-down
intervals. Contrary to theMap query, DS2 performs frequent rescal-
ing actions even while the input remains low. The latency (fig. 3d)
starts to increase early on, and DS2 never manages to recover. How-
ever, DS2 assigns the lowest number of workers throughout the
experiment. HPA-Varga follows the input pattern but aggressively
issues scale-up actions, reaching the maximum available resources
early. Despite the many resources, it fails to ensure low latency.
HPA-CPU matches the input pattern, steadily providing more re-
sources. However, it still fails to retain low latency.
Decreasing pattern. In contrast to the increasing pattern, the
decreasing workload employs a constantly decreasing input rate.
This experiment demonstrates the scale-down performance of the
autoscalers in isolation. Figure 4 illustrates the behavior of the
autoscalers in terms of workers deployed and latency.
– Performance on Map. Similar to the increasing workload, Dhalion
does not react to input on time, resulting in fluctuating behavior.
DS2 again keeps the resources low but fails to reduce the latency
before the input decreases sufficiently. HPA-CPU follows the de-
creasing pattern and retains low latency throughout the execution
while issuing slightly fewer rescaling actions than the rest. HPA-
Varga also keeps latency relatively low while recommending fewer
resources than HPA-CPU.
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Figure 4: Decreasing pattern

– Performance on SWA. The SWA query presents a challenge to all
methods in the decreasing pattern. Dhalion immediately considers
the initial parallelism inadequate and quickly scales the system to
the maximum available resources. Despite utilizing all the avail-
able workers, Dhalion fails to handle the high latency early on. It
only manages to reduce the latency after the input rate has been
decreased significantly, although it issues an unexpected upscale.
HPA-CPU achieves the same performance in terms of latency. How-
ever, it assigns significantly fewer resources throughout the exe-
cution. DS2 and HPA-Varga cannot retain low latency throughout
the entire run. DS2’s provisioning adheres to the input pattern,
while HPA-Varga quickly maximizes the resources, remaining at
the highest parallelism for the entire run.
Cosine pattern. The cosine pattern combines increasing and de-
creasing input behavior and composes a representative real-world
workload that requires varied scaling actions. It is an interesting
experiment that allows us to evaluate the autoscalers on an explain-
able, highly dynamic workload. We illustrate the performance of
the autoscalers in Figure 5.
– Performance onMap. Contrary to its behavior on the increasing
and decreasing patterns, Dhalion’s resource allocation follows the
input with a small delay. This delay causes a latency increase during
periods of high input rate. Dhalion manages to recover during peri-
ods of lower input rate. Similarly, DS2 suffers from a small latency
increase only during periods of high throughput. DS2 keeps pro-
viding fewer resources throughout the experiment while following
the input pattern. This is a consequence of failing to handle the
generated lag arising from rescaling. The same latency behavior is

observed for HPA-Varga, resulting from a slow scale-up of work-
ers. In contrast, HPA-CPU maintains low latency while adjusting
resources on time to keep up with the input.
– Performance on SWA. Similar to Map query, Dhalion does not
react in time to the input changes, resulting in a latency increase.
DS2 follows the input accurately. However, it suffers from high
latency since it doesn’t recover even during low input periods. Both
HPA-based autoscalers have high latency for high input periods as
they react late to the input changes. However, HPA-CPU achieves
the same performance with fewer deployed workers.
Random pattern. The random workload pattern is the most com-
plex and another representative real-world challenging pattern. It
resembles real-world traffic with sudden spikes and irregular input
changes, making the scaling actions varying and less obvious.
– Performance on Map. Unsurprisingly, Dhalion fails to match re-
sources with the input pattern. It reacts slowly to the random pat-
tern’s sudden input changes, leading to large periods of high latency.
Despite the randomness of the pattern, DS2 manages to assign re-
sources according to the input pattern. However, in terms of latency,
it fails to adapt during prolonged periods of high input rates. HPA-
Varga and HPA-CPU adapt to the input pattern for the majority of
the time. However, HPA-Varga suffers from sudden increases in in-
put rate leading to temporary higher latency. HPA-CPU maintains
low latency for most of the experiment, except for a high latency
period at a sudden increase in input rate.
– Performance on SWA. Only DS2 manages to follow the progression
of the input pattern for the SWA query. However, latency remains
high for all periods of medium to high input rates. Both HPA-based
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Figure 5: Cosine pattern

autoscalers fail to match the input at any moment, and after a while,
they constantly scale up, trying to deal with the lag accumulated
in the input queue. Although Dhalion does not keep up with the
changes in the input rate, it has the best overall performance in
terms of latency and the longest periods of low latency.

6.3 Query Comparison
Although the Map and the Session Window Aggregate queries are
representative processing tasks, we evaluate the autoscalers on
additional queries for completeness. Due to space limitations, we
only present the performance of additional queries deployed on the
cosine workload. Figures 7, 8 & 9 illustrate the performance of the
autoscalers on the additional queries.
Performance on Filter. The Filter query belongs to the same class
of stateless low-complexity computation tasks as the Map query.
As so, we expect similar behavior from the autoscalers. Indeed,
DS2 and HPA-CPU show the same behavior as in Map. During
peak periods of activity, Dhalion follows the input with a slight
delay, resulting in high latency; similar to Dhalion’s behavior in
Map. HPA-Varga has a similar resource provisioning as in Map
but performs slightly better in terms of latency because of better
resource allocation.
Performance on Incremental Join. Incremental Join is the most
complex query employed. This gives us an opportunity to evaluate
the autoscalers on a system under stress, even during low input
rates. Dhalion is the only autoscaler that matches the input rate and
achieves low latency for the whole experiment duration. However,
it employs twice as many resources as DS2 or HPA-CPU. DS2 and
HPA-CPU minimize the scaling actions and the deployed resources

but also see latency increases. HPA-Varga reacts slowly to the input
increases, reflecting high latency during periods of high input rate.
Performance on Sliding Windowed Aggregate. The Sliding
Windowed Aggregate (SA) differentiates from SWA in the type of
window employed. While a session window produces a constant
flow of records throughout the system, a sliding window produces
output only when a time interval ends.

For SA, HPA-CPU performs the best as it follows the input pat-
tern and keeps latency low while provisioning a minimal number of
workers for the entire run. DS2 cannot align with the input pattern
as it perceives dead periods as underprovisioning. Thus, it decides
that the system underperforms and falsely raises the resources.
Dhalion has competitive performance with delayed scale-up deci-
sions that lead to small latency spikes when the input rate increases.
At the same time, on average, it deploys more workers than HPA-
CPU. HPA-Varga provisions resources similarly to HPA-CPU but
fails to allocate them correctly, impacting the latency.

6.4 Convergence comparison
We perform a convergence experiment to evaluate the ability of the
autoscalers to converge to an optimal configuration, given a specific
input rate. We use the steps workload discussed in Section 5.3 and
the Map and SWA queries. The experiment assesses the time and
scaling actions required to converge to an optimal configuration.

Figures 10 and 11 show the deployment of workers over time.
Dhalion shows a slow reaction to input changes. As a result, it
fails to converge within the provided time frame to any of the two
input rates. HPA-Varga reacts slowly to the increased input rate
and does not converge regardless of the input rate and the query.
Surprisingly HPA-CPU is also slow to react to the high input change
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Figure 7: Filter.

for both queries. However, it converges for the medium input rate
within two scaling actions for the Map query. We deploy DS2 with
and without overprovisioning. Both versions react quickly to input
changes but only manage to converge for the medium input rate of
the Map query within two and three scaling actions, respectively.
Although DS2, without overprovisioning, temporarily decides on a
stable configuration, it continues oscillating after a while.
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Figure 8: Incremental Join.

6.5 Summary of findings
In our experiments with different workloads, we observed varying
behavior among autoscalers. DS2 consistently follows the input pat-
tern but may encounter occasional high latency. Dhalion struggles
to adapt to less complex patterns, reacts slowly to more complex
patterns, and allows for high latency. HPA-Varga generally aligns
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with the input patterns but may react slowly to input rate increase.
HPA-CPU outperforms all autoscalers for less complex queries in
terms of latency, adjustment, and resource utilization. However,
HPA-CPU fails to sustain low latency when facing high-input peri-
ods for more demanding queries.

Experiments with additional queries support our earlier obser-
vations. HPA-based autoscalers perform well for stateless queries.
HPA-CPU matches the input pattern while maintaining low latency.

HPA-CPU also performs adequately for the sliding windowed ag-
gregate query but fails to provide enough resources in the case of
the Incremental Join query. HPA-Varga performs worse on complex
queries, both in terms of latency and deployed workers. Dhalion
reacts slowly to input changes and allocates resources inefficiently,
leading to high latency. DS2 allocates fewer resources and avoids
unnecessary scaling actions. However, it struggles to maintain low
latency in high throughput periods, especially for complex queries.
Finally, our convergence experiments show that none of the eval-
uated autoscalers can converge within the time limits of our ex-
periments for complex queries. Only HPA-CPU and DS2 converge
when scaling down from a higher load to a medium input rate.

The design choices of each autoscaler reflect on its performance.
DS2 adjusts to the input rate accurately and fast due to effective
metrics and efficient scaling of multiple operators at once, by prop-
agating changes to downstream operators. However, DS2 does not
consider the lag generated when it issues scaling actions, leading to
high latency. Dhalion relies on backpressure and input buffer usage
to decide on scaling actions. However, when backpressure can be
detected, the system has already entered an unhealthy state. Addi-
tionally, Dhalion only scales a single operator in each scaling action,
reacting slowly to changes. Dhalion fails to distribute efficiently re-
sources to the operators resulting to unstable performance and slow
convergence. HPA-CPU solely depends on CPU load, which may
not accurately reflect the performance impact of complex stateful
queries that involve accessing large datasets from memory or disk.
Despite our best efforts, we could not overcome that HPA-Varga is
designed to work on a deployment level rather than on an operator
level. Its utilization metric can be directly measured per operator,
while the relative lag can be calculated only indirectly.

As seen in our experiments, the evaluated autoscalers are af-
fected by the lag generated during the rescaling actions, and none
can currently consider it when deciding on the optimal configura-
tion. This generated lag is partially a side effect of current systems’
inability to migrate their state without a stop-and-restart process.
Although the problem of state migration is orthogonal to autoscal-
ing, it plays a crucial role in the performance. Despite prior work
introducing proposals for on-the-fly state migration techniques
with low overhead, stream processing systems have yet to adopt it.
Previous evaluations. The original evaluation of Dhalion shows
a necessity for numerous rescaling actions and considerable time
to achieve desired throughput convergence. Our experiments vali-
date this observation, as the time frame are insufficient for Dhalion
to reach convergence. In our work, we observe that Dhalion de-
ploys more resources than the other autoscalers. The findings from
the DS2 evaluation show lower resource deployments and faster
convergence with fewer actions than Dhalion. Unlike the original
evaluation, DS2 does not always converge within the time frame
set in our experiments. HPA-Varga and HPA-CPU do not conduct
an evaluation using the same metrics or offer similar insights.
Limitations. In this work, we propose a principled evaluation
framework for evaluating control-based autoscalers. Evaluating
additional autoscalers under this framework can provide rich in-
sights, as we showcase with our experiments, and might lead to
different conclusions. Furthermore, we evaluate the performance
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of the autoscalers on top of Apache Flink. Our evaluation frame-
work assumes durable input and output queues and a stream pro-
cessing engine that allows for per-operator scaling. The evaluated
autoscalers are agnostic to the specifics of the underlying rescaling
mechanisms of an SPE and only require specific metrics provided
by the engine as well as a rate control mechanism in the case of
Dhalion. However, extending the current evaluation to other stream
processing engines, such as Storm3 and Heron [21], can provide
valuable insights regarding the autoscalers’ applicability and the
configurations’ performance based on the rescaling mechanisms.

7 CONCLUSION
In this work, we highlighted the lack of significant comparison
between existing autoscaling solutions in stream processing. We
provided a principled experimental framework to evaluate perfor-
mance and identify unsolved challenges. We extensively evaluated
four control-based autoscalers on dynamic workloads and queries.
Surprisingly, a method utilizing CPU usage outperforms state-of-
the-art solutions for minimal queries in all workloads. We show-
cased that none of the evaluated autoscalers can perform well for
complex queries over highly dynamic workloads. We discuss the
impact of the autoscalers’ design choices on their performance, and
we argue that the poor performance of the evaluated autoscalers
is a result of their inability to account for the lag generated dur-
ing an autoscaling action or due to slow reactions to the input
changes. Finally, we urge stream processing engines to adopt on-
line state migration techniques as it would significantly improve
the performance of autoscaling.
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